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FINITE ELEMENT SIMULATION OF DIP COATING, 11: 
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SUMMARY 

We apply in this paper the augmented Lagrangian method to the study of various non-Newtonian fluid 
flow problems, and in particular the dip coating process. We only present in this second part the 
treatment specific to the non-linearities involved in the constitutive equations, the first part having 
largely been concerned with the general description of the approximation used. 

Two rheological models illustrating different rheological behaviours are used to simulate dip coating 
process: the Carreau-A model for shear-thinning properties of the viscosity and a truncated second- 
order model for a Newtonian behaviour in viscosity with elastic properties. 

Numerical predictions show a very good agreement with experimental data for the second-order 
model. The discrepancy observed in the other case can be explained qualitatively by the elastic 
properties exhibited by the shear-thinning fluids used: this elasticity is not taken into account in the 
Carreau-A model. 

KEY WORDS Augmented Lagrangian Finite Element Method Dip Coating Non-Newtonian Fluids 

1. INTRODUCTION 

In the first part of this work,' we have shown that the finite element method coupled to a 
pseudo-time stepping technique is suitable to predict the meniscus shape, one of the main 
characteristics of the dip coating process, in the case of Newtonian fluids. Most coating fluids, 
however, are polymeric fluids and Newton's law of viscosity is completely inadequate for 
describing the relation between the stress components and the velocity gradients, called the 
constitutive equation or rheological equation of state. General constitutive equations lead to 
non-linear problems. We shall develop, in this second part, a quite general procedure to deal 
with these non-linearities. We shall then consider two types of constitutive equations, each 
one representing two of the most important characteristics of the polymeric fluids used in 
coating processes: shear-thinning and elasticity. 

The first constitutive equation is a simple extension of the Newtonian model and is called 
generalized Newtonian fluid (GNF) model. It can describe the shear rate dependence of the 
viscosity and several empiricisms are available for this. Because shear-thinning (monotonic 
decrease of viscosity with increasing shear rate) is the most commonly encountered shear 
rate dependence of viscosity for polymeric fluids, we have chosen the model A of Carreau, 
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which has been proved to fit fairly well the shear-thinning behavior for a great variety of 
these fluids, contrarily to the classical and widely used power-law modeL2 

The second equation can be seen as an extension of the previous GNF model, as well as a 
truncation of a more general expression for the stress tensor for a very wide class of fluids, 
the Criminale-Ericksen-Filbey (CEF) equation, which is itself a simplification of the Reiner- 
Rivlin equation.2 If we define the rate-of-strain tensor by: 

i, = $[VV + (VV)’] ( 1) 

c c =  -2q0+-291{+.+} (2) 

the constitutive equation we will use is written as follows: 

where qo is a parameter associated with the viscosity of the fluid and is the first normal 
stress coefficient related to  its elasticity. They are defined customarily in shear flows. 
Choosing these parameters to be constant means that the viscosity will remain constant 
(Newtonian behaviour) and that the first normal stress difference, NI, related to q, by the 
relation: 

shows a quadratic dependence on rate-of-strain, which is typical of a so-called second-order 
fluid.’ In equation (2’) x is the direction of flow and y is the direction of the velocity 
gradient. 

For polymeric fluids, it is extremely rare to find shear-thinning without elasticity and vice 
versa. It seems then a priori unreasonable to work with such simplified constitutive equa- 
tions, one describing a shear-thinning behaviour alone, the other an elastic behaviour 
without any shear-thinning. The reasons given by Bird et al.’ for justifying the use of GNF 
models as well as second-order models instead of more realistic rheological equations of 
state in such situations of flow slightly outside of the region of legitimacy of these models can 
appear to be sufficient. We have to add, however, the purely mathematical interest of the use 
of such models. Another justification can be found for the use of the second-order model 
defined by equation (2): recently, some remarkably interesting rheological properties have 
been found for a fluid3 allowing not only valuable comparison between numerical predictions 
and experimental data but also to determine or identify the role of normal stresses (i.e. 
‘elasticity’) in a determinate situation of flow. 

The addition of such constitutive relations to  the equations of change governing the 
dynamics of flow problems introduces new non-linearities whose treatment requires peculiar 
attention. Only a few particular non-Newtonian problems have been s01ved.~ The purpose of 
this second part is to  present an extension to  the study of non-Newtonian flow problems and 
in particular to the dip coating problem of a method developed by Fortin and Glowinski,’ 
called the augmented Lagrangian method, which has been used in electromagnetism6 and has 
been proved to be applicable, particularily when a non-linearity is related to the unknown 
gradients, i.e. the velocity gradients. 

2. THE AUGMENTED LAGRANGIAN METHOD 

2.1. Basic principles 

Let us consider the equations governing the steady isothermal flow of a generalized 
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Newtonian fluid. We have, as in part I: 

V . P  + v p  + (v  .V)v = f 

TD = -2dlYl)+(v) = +(I.;vI2>%v) 

(3)  

v . v = o  (4) 

( 5 )  
We denote by T~ the deviatoric of the viscous stress tensor, v is the velocity, p the pressure 
and f a body force. We denote by y the rate of strain tensor and by I+/, its second invariant 
(IyI = J(+ :+)I. 

Equation ( 5 )  is the constitutive relation of the fluid. It relates the viscosity q and the rate- 
of-strain tensor to the stress tensor. For a Newtonian fluid, q is constant. For a generalized 
Newtonian fluid, we have a relation between q and I*(. 

We refer to part I for a description of the boundary conditions needed to specify the dip 
coating flow problem. In order to associate with Problem (3)-(5) a variational principle in the 
classical sense (minimization of a functional) we temporarily neglect inertial terms in (3) .  

Defining @(y) by: 

solving (3)-(5) is equivalent to the minimization of 

J(v) = b @(ly12) dx - 1 f .  v dx 
n 

(7) 

under the constraint V.v = 0. 
A direct use of (7) in a finite element method leads to a set of non-linear equations. This 

implies that one must solve this problem using an iterative technique, in general by solving a 
sequence of linear problems. Solving a large linear system can be done in two steps: factoring 
the matrix and solving the computed factors. The first operation is much more time 
consuming than the second, so that solving a sequence of linear problems with a fixed matrix 
is much less expensive than an analogue sequence in which the matrix has to be factored at 
each step. The augmented Lagrangian method reaches this goal by a decomposition method 
that restricts the non-linearity to ‘local’ point-wise problems. To do so, we introduce, 
following Reference 5 ,  an auxiliary tensor u and we minimize (with V . v = 0): 

f(v, a) = Q @(lalz) dx - b f.v dx 

under the constraint u = +(v). This is of course a mere trivial restatement of the problem. We 
now deal with the constraint by the simultaneous use of a Lagrange multiplier and a penalty 
term in the spirit of the multiplier method of Hestenes’ and PowelL8 We thus define the 
augmented Lagrangian (that also takes into account the constraint V.v = 0): 

Ye, (v ,p ,a ,A)=  6, @(lu[z)dx-~a pV.vdx-L f.vdx 

(9) 
r 

u(x)[A:(u-+(v)]~x+- U ( X )  l ~ - y ( v ) l ~ d x  + b  2 6 ,  
The factor a(x) is used to rescale the Lz(fl) scalar product and we shall discuss later its role 
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as a convergence accelerator. It can be taken equal to one, but the optimal choice is to use 
the best available estimate of q ( ( j ( ) .  r is a penalty parameter. 

Let us consider the three equilibrium equations describing a saddle-point of the Lagran- 
gian Zr. The variational equations, obtained by solving in v, p when u and A are fixed, can 
be written: 

(10) 1 a(x)+(v) : j(6v) dx - a(x)(A+ ru)  : j(6v) dx b 
-b  

6pV.vdx=O, V6V, V6p I, 
where Sv and 6p (the variations of v and p) are to be chosen in an appropriate functional 
space taking into account essential boundary conditions. Problem (10) is a linear problem of 
Stokes type with a variable viscosity coefficient a(x). 

Solving in u, v, p and A being given, yields the equation: 

[q(lul) + ra(x)]u:60 dx - a(x)[rj(v)- A]: 6 u  dx = 0 (11) I, 6, 
This equation contains no derivative and can be shown to be equivalent to an (infinite) set of 
point-wise equations: 

[~(bl) + ra (x) ldx)  - a(x)[r+(v(x)> - Mx)l=  0, VX E Q (12) 

u = j (v)  (13) 

Finally the optimality condition in A is nothing but the constraint 

We shall now proceed to the discretization of these equations and then consider an iterative 
method using the discrete analogues of (lo), (12) and (13) to compute the solution of the 
problem. Before doing so, we shall consider two examples of constitutive relations, in order 
to illustrate the decomposition principle. 

Example 1: Carreau-A model. We consider, following Carreauy the constitutive equa- 
tion: 

TD = -qo [ l+  ~t,j(v)~2]-s+(v) (14) 
The function @,(a) is easily seen to  be: 

[( 1 + t f 1 ~ 1 ~ ) ~ - ~  - 1 J V o  @(a) = 
2(1- s>t: 

and equation (12) becomes point-wise: 

a= a(x)[r+(v)-A] rlo 
([1+ tf lo(’]” 

This tensor equation can be reduced to a scalar equation. Indeed IuI satisfies the equation: 
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Such a non-linear one-dimensional problem can be solved very simply by a classical method, 
such as Newton's method. When lul is known, this value can be inserted in (16) which then 
becomes a set of uncoupled linear equations, The use of the augmented Lagrangian in this 
case fully satisfies the condition of Reference 5 and can be completely justified. 

Example 2: second-order model. This example is a formal extension of the above develop- 
ment. It shows that the method can be applied to  cases where it cannot be rigorously proved 
to  work. We consider the constitutive equation equivalent to (2): 

TD= -2~o+-2'P,(+.j)=(-2~,6-2'P\Ir,+).+ (18) 

where 6 is the unit tensor, or: 

TD=-q(+).+ (18') 

This can thus be seen as a generalized Newtonian fluid in which viscosity is no longer 
isotropic and is defined by a tensor dependent on +(v). It is no longer possible to  find a 
function @ and to write the Lagrangian Zr. It is however possible to consider equations (lo), 
(12) and (13). In particular (12) becomes: 

2q0u + 2'P1u. u + ra(x)a = a(x)(r+(v) - A) (19) 

This is a set of 4 or 5 (depending if a plane or an axisymmetric problem is considered) 
non-linear equations. Newton's method can be used provided a reasonable initial estimate is 
available. 

2.2. Discretization 

With respect to the approximation of a Newtonian flow, the procedure we follow requires 
no real change. The approximation of v and p was done using the Qg3 and T,3 elements as 
in Part I. The approximation of problem (10) is then a straightforward procedure and was 
done exactly as in the Newtonian case. The only really tricky thing is the discretization of 
variables A and u. The components of u should at the limit be equal to the components of 
j(v). If v is approximated by a biquadratic polynomial, the components of +(v) are 
themselves in a subspace of biquadratic polynomials. We chose to approximate, on each 
element, u by a biquadratic on quadrilateral elements and by a quadratic on triangular 
elements. 

There is no continuity requirement on these functions. Moreover, the degrees of freedom of 
these functions were defined using as nodal values either the points of a 3 x 3  Gaussian 
formula on the reference element for quadrilaterals or the 6 points of a Gaussian formula on 
the reference element for quadrilaterals or the 6 points of a Gaussian formula accurate for 
polynomials of degree 4 on triangles.'' These quadrature formulae are then exact to compute 
integrals, such as Jn u : A dx appearing in the augmented Lagrangian. The shape functions 
associated with these nodes are then orthogonal with respect to the quadrature formulae or 
even for the exact integration. Finally the term Ja @(lal) dx is evaluated using the same 
quadrature formulae. 

This yields a discrete equivalent of Equation (1 1) that can be uncoupled on each numerical 
integration point. If other nodal values had been chosen for u, we would have to solve a set 
of non-linear equations on each element. The values of A are also defined at the same points 
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so that using the same quadrature rule to evaluate in Equation (10) 

jn a(x)[A + r a ]  : j(6v) dx 

a(x) being constant per element. 

never explicitely used. 
We only need to know the nodal values of A and u, and the shape functions are in fact 

2.3. The iterative algorithm 

The maximization in A is obtained by an iterative process, called ALG2 in Reference 5 .  
When the stability of the numerical solutions is reached, both A and u are equal to j(v). It is 
then possible to test the stability either by imposing a criterion on two successive values of A 
or classically by testing the velocity values. It has been shown5 that, for some classes of 
problems, the convergence in A and v can be uncoupled, that is X has not converged although 
v has done. In our problem, we have noticed it was not the case then the classical alternative 
has been used to stop the computation. The algorithm is then organized as follows: 

At the ith iteration: 
(i) A", pa, v" being given arbitrarily or from available data, factorize the stiffness matrix. 

(ii) compute ui from r-', v'-' by minimizing yrh(cri, v'-', 
(iii) update A by A' = Xi-' + r(ui -$i-l(vi-l)) 
(iv) solve a Stokes problem in v' that is minimize yrh(a', v, xi) in v (equation (10)) 

in a (Equation (12)), 

(v) test the convergence by max and return to step (ii) if necessary. 

This method is shown to converge by Fortin and Glowinski5 for a wide class of problems 
containing in particular the Carreau-A model. A crucial point to get good convergence 
properties is to make a good choice of a(x). It is also shown that a(x) should be an estimate 
of the actual viscosity q(j(v)). It is possible to compute a good value of a(x) using some 
initial estimate of v. This is usually done in some incremental procedure proceeding to 'more 
and more non-linear' problems and using the previous solution to estimate a(x) .  This is what 
was done in our computations on Carreau-A model moving from S = O  (Stokes flow) to  
S = 0.4, corresponding to a highly non-linear problem. For a properly chosen a(x) it can be 
shown5 that the best choice for the penalty parameter is r = 1. Indeed, with such a choice, the 
linear problem can be proved to converge in one iteration. 

3. NUMERICAL TESTS 

In order to evaluate the performance of the algorithm, we have simulated a simple shear flow 
in a circular tube of an inelastic fluid whose rheological behaviour follows the Carreau-A 
model of viscosity. The fluid selected is a solution of Polystyrene in a solvent called Aroclor, 
for which rheological data were available." This simulation has been performed with two 
sets of boundary conditions. 

(i) The first configuration (shown in Figure 1) consists of imposing a pressure loss between 
the inlet and the outlet of the tube. For such a situation, a pseudo-analytical solution 
can be derived which allows evaluation of the accuracy of computational results. 
Indeed, for a given pressure loss in a circular tube, the momentum equations can be 
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v = v(r) 

u = o  

J 

av  - = o ,  u = o  ar 

P = O  
u = o  

pa 
u = o  

‘b 
u = o  

Figure 1. Imposed pressure loss in a circular tube: grid and boundary conditions 

written in steady-state as follows: 

--s dv, AP 
dr  2L 

qo[l+(t,j) ] -= - - - r  

where j ,  the magnitude of the rate of strain tensor y, which is a rate of shear tensor in 

this case, reduced to ( -- j2 2). AP is the pressure loss, L the length of the tube and r 

the radial coordinate. ZJ, is the component of v in the direction of flow. This equation is 
non-linear, then the solution is obtained iteratively by the Newton’s method. Once 
dv,/dr has been calculated for various values of r, the velocity profile is obtained by 
integrating the shear rate with respect to r by the Simpson’s rule. Two tests have been 
performed: one deals with the error of discretization, that is determines the influence 
of the mesh size; the other with the error due to the calculation of the non-linearity 
node by node. Indeed, since the non-linear term is not polynomial, its evaluation by a 
quadrature formula leads to introduce errors in the computation. 

(ii) the second configuration (shown in Figure 2) was used to test the behaviour of the 
algorithm when the physical problem becomes highly non-linear, that is in the case of 
strong shear-thinning. In order to  do this, a flow rate is imposed as inlet condition 
(under the form of a Poiseuille flow) whereas at the outlet, we assume that the flow is 
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fully developed. With such conditions, a choice of initial guess like a Poiseuille flow 
allows fast convergence. 

The physical problem being axisymmetrical, the solution is sought between the centre line of 
the tube and the wall, whatever the configuration. 

The only non-linear effect in these tests is caused by the rheological behaviour of the fluid 
considered. In Figure 3 we show the typical evolution of the viscosity with the shear rate 
according to the Carreau-A model. When S = 0, the behaviour is Newtonian, and increasing 
S corresponds to increasing shear-thinning. We have superimposed in Figure 4, for four 
values of S, the numerical solution (represented by symbols) and the pseudo-analytical 
solution (represented by a full line). These results have been obtained with the finite element 
grid and the boundary conditions presented in Figure 1. The comparison of the computa- 
tional results with the pseudo-analytical solution exhibits a noteworthy agreement. The 
observations of the four curves in Figure 4 shows that the flow rate increases with increas- 
ing, S. 

Moreover a very slight amount of shear-thinning is sufficient to increase the flow rate 
significantly. Convergence is reached after few iterations if the problem is weakly non-linear; 

rl 
( p a s )  

Figure 3. Viscosity as function of shear rate as predicted by the Carreau model (vo, t, and 11, are constant) for 
parameter S varying from 0 to 0.45 
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Figure 4. Developed velocity profile for given value of AP: -, analytical or pseudo-analytical solution; numerical 
results: B1,S=O;@,S=O.O2;K3, S=0-04;A,  S=O.1 

the number of iterations increases rapidly when S is augmented. According to the initial 
guess of velocity, it is necessary to compute ten to twenty iterations to get stable numerical 
predictions. The technique adopted to reduce computing time is to use as initial guess of v 
and A for a given problem the results of the previous problem where the value of S is lower. 
If such data are not available, an incremental loading of S is performed. 

In Figure 3, we also present the curves of viscosity versus shear rate for extreme values of 
S.  It is important to point out that, according to our knowledge, no fluid exhibits shear- 
thinning more pronounced than that corresponding to values of S higher than 0-4. These 
curves are drawn from S = 0 to S = 0.45 for the same values of the other parameters of the 
Carreau-A model. Computational tests have been performed for each value of S shown in 
Figure 3, and results are presented in Figures 5-7. In all cases, we used the second set of 
boundary conditions shown in Figure 2, that is we imposed the flow rate. We see a 
rearrangement of the velocity profile from a parabolic form ( S = O )  to a flat profile 
(quasi plug flow) for S = 0.45. Even for this extreme case of non-linearity, numerical convergence 
is obtained without difficulty. 

The results of the error study are presented in Figure 8 as well as in Table I. For a medium 
ranged value of S (S = 0-1) and for a given pressure loss, we have attempted to evaluate the 
error of discretization by varying the number of radial elements. The results show that the 
larger the number of elements, the smaller the error, which is logical. Accuracy of the 
method and of the elements is however noteworthy, since the error of discretization is in h4. 

Table I shows the error of computation which occurs when one increases the value of s. 
For slight shear-thinning, this error is negligible. For highly non-linear behaviour, the error 
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Figure 5. Developed velocity profile for given value of volumetric flow rate: -, analytical or pseudo-analytical 
solution; numerical results: 0, S = 0.05; A, S =0.1; +, S = 0.15 
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V - 
vmox 

0 
0 r/ R t 

Figure 6. Developed velocity profile for given value of volumetric flow rate: -, analytical or pseudo-analytical 
solution; numerical results: 0, S = 0.2; A, S = 0.25; e, S = 0.3 
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Figure 7. Developed velocity profile for given value of volumetric flow rate: -, analytical or pseudo-analytical 
solution; numerical results: Dl, S = 0-35; A, S = 0.4; 4, S = 0.45 

reached is far beyond the error of measurement which could be performed even with 
sophisticated apparatus. Thus, the method is seen to be very performant for a wide range of 
conditions. 

Numerical tests for second-order fluid have also been performed. We have taken the data 
of Choplin et aL3 for the parameters of equation (2). These data will be those corresponding 
to the fluid (Emkarox FC 31-45000) which we will use in dip coating. The conditions of the 
test were those given in Figure 2. For such a flow, an analytical solution of the equations of 
change can be easily derived which shows that the velocity profile is the same as in the 
Newtonian case. The numerical test has confirmed this equivalence. 

4. THE DIP COATING PROBLEM 

4.1. Boundary conditions and free surface algorithm 

The augmented Lagrangian method is now applied to the study of wire dip coating with 
both previously mentioned non-Newtonian models. We refer to  the first part of this work' 
for the boundary conditions (see Figure 9) and the statement of the problem, because they 
are the same as in Newtonian case. We also use the same algorithm for displacing the free 
surface, that is: we impose the natural boundary conditions for the Stokes problem solution 
and iteratively move the free surface with the aid of a pseudo-time stepping technique. The 
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Figure 8. Error of discretization 

Table I. Flow in a circular tube: comparison between pseudo-analytical and numerical velocity profiles 
for different values of the shear-thinning parameter. 

s = 0.25 s = 0.02 s =0.2 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

14249 
1.0155 
0.9865 
0.9371 
0.8670 
0.7759 
0.6636 
0.5300 
0.3750 
0.1983 
0 

1.0247 
1.0155 
0.9865 
0.9371 
0.8670 
0.7759 
0,6636 
0.5300 
0.3749 
0.1983 
0 

8.3012 
8.2814 
8.1844 
7.9618 
7.5742 
6.9868 
6.1675 
5.0867 
3.7161 
2.0291 
0 

8.3291 
8.3130 
8.1697 
7.9449 
7.5458 
6.9546 
6.1293 
5.0488 
3.6834 
2.0096 
0 

0.4 
0.4 
0.3 
0-3 
0.4 
0.5 
0.6 
0.8 
1 
1 
- 

25.5466 
25.5170 
25.3315 
24.8352 
23.8751 
22.2998 
19.9592 
16.7051 
12.3906 
6.8702 
0 

25.6559 
25.6296 
25.4426 
24.9489 
23.9916 
22.4065 
20.0236 
16.7243 
12.3538 
6.8696 
0 

0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.1 
0.12 
0.4 
0.02 
- 
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Figure 9. Boundary conditions for wire dip coating (at equilibrium) 

displacement of this free surface is governed by the following equation: 

Ax =xkt'-xk = a!(u.n)n (21) 

which is the same as equation (16) in Reference 1. 
We remember here that a! is a dummy time step, u.n= u, is the normal velocity at x k ,  

which is a point of the free surface at step k ,  n, the outward oriented normal and Ax, the 
displacement between steps k and k + l .  

The natural boundary conditions are Neumann conditions and can be written on the free 
surface as follows: 

T, ,~ = 0 (no shear condition) (22) 

d2r 
U OdZ2 

(normal stress equilibrium) 

In the case of shear-thinning, the imposed velocity profile at the exit of the domain cannot be 
obtained analytically. It is calculated, for a given thickness h, by: 

v(h)= s d h  [I dh 

where (du,/dh) is obtained by solving with a Newton's method the following unidirectional 
equation of change: 

ar  2 
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Table 11. Parameters of Carreau-A model 

~ 

~~ - 

Fluid qo[=]Pa.s t , [ = ] s  S 

Sodium alginate 211.46 9.7 0.21 
Klucel M 16.76 3.3 0.18 

~~ 

provided we assume this expression is valid for describing the flow at the exit of the domain. 
The integration of u(h)  allows us to compute the flow rate and adjust with the imposed flow 
rate as described in Part I for the Newtonian case. 

In the case of a second-order model, however, the imposed velocity profile, at the exit of 
the domain, will be exactly the same as in the Newtonian case, for a given value of the 
eventual coating thickness. 

4.2. Results and discussion 

The procedure which allowed us to  obtain experimental data can be found elsewhere.'* 
We will consider in this paper, only the direct comparison between these data and the 
numerical predictions. 

In all cases presented, in order to save computing time, we have taken the experimental 

lij 24 .O VELOCITY: 4.25CM/S 
ALGINATE 2 . 6 %  

0 . 
Q 

. 
0 . 

0 

0 .  . 
0 .  . e l  1 '  ' 1  1 I ' 1 1 3  

e z 4 6 8 18 12 14 16 18 a 
THIWSS IN m 

Figure 10. Meniscus profile for Sodium Alginate (V, = 4.25 cmls): 0 numerical prediction; 0 experimental 
measurement 
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data as the initial guess for the meniscus profile, but there is no doubt that any initial guess 
can be used. 

4.2.1. Carreau-A model. We have worked with two polymeric liquids: a solution of 2.6 
per cent in weight of sodium alginate in a glycerol-water mixture and a solution of 3 per cent 
in weight of Klucel M in a glycerol-water mixture. The rheological properties of these fluids 
have been obtained with a Rheometrics System Four. In both cases, the Carreau-A model 
fits fairly well the experimental values of the viscosity in a wide range of shear rate. The 
parameters of the model have been obtained through the use of a non-linear regression 
technique and are shown in Table 11. 

For both fluids, we measured first normal stress differences. We have mentioned previ- 
ously that fluids exhibiting shear-thinning properties together with elastic properties are 
practically impossible to find. It is possible, however, to find shear-thinning fluids which are 
substantially less elastic than others; that is the reason of the choice of such fluids for which 
measured values of normal stress differences are relatively low. Therefore, in firstapproxi- 
mation, the Carreau-A model can be considered sufficient to describe the rheological 
behaviour of these fluids. 

The numerical predictions, however, as compared with experimental data, and shown in 
Figures 10 and 11, as well as in Table I11 for the eventual coating thickness disprove this 

KLUCEL M 3% 

V E L O C I T Y :  2.87CM/S 1 .  

0 

0 
8 &.* 

U 2 4 6 8 18 12 I4 16 
v 

THIMHES M m 
Figure 11. Meniscus profile for Klucel M (V, = 2.87 cmis): 0 numerical prediction; 0 experimental measurement 
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Table 111. Eventual coating thickness: comparison between ex- 
perimental data and numerical predictions 

Fluid V, [=I m/s h,,, [=I mm hex, [=I mm 

Sodium alginate 0.0425 1.91 1.02 
Klucel M 0.0287 1.44 0-85 
Emkarox FC 31-45000 0.0089 3.18 3.26 

assumption. We observed a not negligible discrepancy in the whole meniscus, indicating that 
it will be necessary to take into account the normal stresses exhibited by the fluids. 

Moreover, the dip coating flow situation presents a relatively important difference with 
respect to the shear flows we used in the numerical tests. Only the upper part of the meniscus 
is in steady shear flow. In the remaining part, we have a superimposition of steady shear and 
elongational flows. Despite the fact that we only considered creeping flow, the behaviour of 
fluids exhibiting both shear-thinning and elastic properties in such situations is far from 
completely understood and well known, and will certainly affect the shape of the meniscus. 
The main conclusion is that shear-thinning is not sufficient to describe the rheological 
behaviour of these apparently very weakly elastic fluids even at low shear-rates. 

0 

U 

I 

EMKAROX FC 31-45000 

VELOCITY: 0.89CM/S 

' a  ... 
">a ~ 

8 2 4 6 8 I8 12 I t  16 18 28 

~ti~avfss IN m 
Figure 12. Meniscus profile for Emkarox FC 31-45000 (V,, = 0.89 cm/s): 0 numerical prediction; 0 experimental 

measurement; - meniscus profile in the Newtonian case (same viscosity as that of Emkarox) 
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4.2.2. Second-order fluid. We have used the Emkarox 31-45000 which exhibits a Newto- 
nian behaviour in viscosity and a second-order behaviour for the first normal stress 
difference. The parameters of equation (2) for this fluid have been taken from Reference 3, 
namely qo = 124 P a s  and = 0.04 Pa.?. The particularity of this fluid is that it is the only 
one, to our knowledge, which can be called a real second-order fluid. 

In Figure 12, as well as in Table 111, the numerical predictions are compared with 
experimental data, showing very good agreement. In Figure 12, we also present the meniscus 
profile obtained when the Newtonian model (with the same value of viscosity) is introduced, 
in order to identify the influence of the second-order term of equation (2). The presence of 
the first normal stress difference (in other words, of some elasticity) tends to decrease the 
eventual coating thickness. Another very interesting point has to be outlined: the contribu- 
tion of elongational flow appears to be correctly taken into account by the second-order 
model describing the rheological behaviour of the fluid used. 

5 .  CONCLUSIONS 

The augmented Lagrangian coupled to a finite element method is very suitable to simulate 
various non-Newtonian flows and in particular the dip coating process. The decoupling of 
non-linearities allows a great flexibility for introducing various complex rheological be- 
haviours in the equations governing the dynamics of polymeric liquids. 

We have shown that the role of elasticity is to reduce the eventual coating thickness. 
Because the majority of the polymeric liquids exhibit both shear-thinning and elastic 

properties, the use of GNF models which take into account the former has not been found to 
adequately simulate the dip coating process. 

We then underline the necessity of applying this method with more representative rheologi- 
cal behaviours. 
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